

EUROPEAN COMMITTEE FOR STANDARDIZATION
C O M I T É E U R O P É E N D E N O R M A L I S A T I O N
E U R O P Ä I S C H E S K O M I T E E F Ü R N O R M U N G

CEN-CENELEC Management Centre: Rue de la Science 23, B-1040 Brussels

© 2022 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

Ref. No.:CWA 16926-17:2022 E

CEN

WORKSHOP

AGREEMENT

 CWA 16926-17

 December 2022

ICS 35.200; 35.240.15; 35.240.40

English version

 Extensions for Financial Services (XFS) interface
specification Release 3.50 - Part 17: Barcode Reader

Device Class Interface - Programmer's Reference

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the
constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the
National Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held
accountable for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North
Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

CWA 16926-17:2022 (E)

2

Table of Contents

European Foreword .. 3

1 Introduction ... 7

1.1 Background to Release 3.50 ... 7

1.2 XFS Service-Specific Programming ... 7

2. Barcode Readers ... 9

3. References ... 10

4. Info Commands ... 11

1.1 WFS_INF_BCR_STATUS ... 11

1.2 WFS_INF_BCR_CAPABILITIES ... 14

5. Execute Commands .. 17

1.3 WFS_CMD_BCR_READ ... 17

1.4 WFS_CMD_BCR_RESET ... 19

1.5 WFS_CMD_BCR_SET_GUIDANCE_LIGHT .. 20

1.6 WFS_CMD_BCR_POWER_SAVE_CONTROL .. 22

1.7 WFS_CMD_BCR_SYNCHRONIZE_COMMAND .. 23

6. Events ... 24

6.1 WFS_SRVE_BCR_DEVICEPOSITION ... 24

1.8 WFS_SRVE_BCR_POWER_SAVE_CHANGE ... 25

7. C - Header file .. 26

CWA 16926-17:2022 (E)

3

European Foreword

This CEN Workshop Agreement has been developed in accordance with the CEN-CENELEC Guide 29

“CEN/CENELEC Workshop Agreements – The way to rapid consensus” and with the relevant provisions of

CEN/CENELEC Internal Regulations - Part 2. It was approved by a Workshop of representatives of interested

parties on 2022-11-08, the constitution of which was supported by CEN following several public calls for

participation, the first of which was made on 1998-06-24. However, this CEN Workshop Agreement does not

necessarily include all relevant stakeholders.

The final text of this CEN Workshop Agreement was provided to CEN for publication on 2022-11-18.

The following organizations and individuals developed and approved this CEN Workshop Agreement:

• AURIGA SPA

• CIMA SPA

• DIEBOLD NIXDORF SYSTEMS GMBH

• FIS BANKING SOLUTIONS UK LTD (OTS)

• FUJITSU TECHNOLOGY SOLUTIONS

• GLORY LTD

• GRG BANKING EQUIPMENT HK CO LTD

• HITACHI CHANNEL SOLUTIONS CORP

• HYOSUNG TNS INC

• JIANGSU GUOGUANG ELECTRONIC INFORMATION TECHNOLOGY

• KAL

• KEBA HANDOVER AUTOMATION GMBH

• NCR FSG

• NEXUS SOFTWARE

• OBERTHUR CASH PROTECTION

• OKI ELECTRIC INDUSTRY SHENZHEN

• SALZBURGER BANKEN SOFTWARE

• SECURE INNOVATION

• SIGMA SPA

It is possible that some elements of this CEN/CWA may be subject to patent rights. The CEN-CENELEC policy on

patent rights is set out in CEN-CENELEC Guide 8 “Guidelines for Implementation of the Common IPR Policy on

Patents (and other statutory intellectual property rights based on inventions)”. CEN shall not be held responsible for

identifying any or all such patent rights.

The Workshop participants have made every effort to ensure the reliability and accuracy of the technical and non-

technical content of CWA 16926-17, but this does not guarantee, either explicitly or implicitly, its correctness.

Users of CWA 16926-17 should be aware that neither the Workshop participants, nor CEN can be held liable for

damages or losses of any kind whatsoever which may arise from its application. Users of CWA 16926-17 do so on

CWA 16926-17:2022 (E)

4

their own responsibility and at their own risk.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI) - Programmer's Reference

Part 2: Service Classes Definition - Programmer's Reference

Part 3: Printer and Scanning Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Device Class Interface - Programmer's Reference

Part 15: Cash-In Module Device Class Interface - Programmer's Reference

Part 16: Card Dispenser Device Class Interface - Programmer's Reference

Part 17: Barcode Reader Device Class Interface - Programmer's Reference

Part 18: Item Processing Module Device Class Interface - Programmer's Reference

Part 19: Biometrics Device Class Interface - Programmer's Reference

Parts 20 - 28: Reserved for future use.

Parts 29 through 47 constitute an optional addendum to this CWA. They define the integration between the SNMP

standard and the set of status and statistical information exported by the Service Providers.

Part 29: XFS MIB Architecture and SNMP Extensions - Programmer’s Reference

Part 30: XFS MIB Device Specific Definitions - Printer Device Class

Part 31: XFS MIB Device Specific Definitions - Identification Card Device Class

Part 32: XFS MIB Device Specific Definitions - Cash Dispenser Device Class

Part 33: XFS MIB Device Specific Definitions - PIN Keypad Device Class

Part 34: XFS MIB Device Specific Definitions - Check Reader/Scanner Device Class

Part 35: XFS MIB Device Specific Definitions - Depository Device Class

Part 36: XFS MIB Device Specific Definitions - Text Terminal Unit Device Class

Part 37: XFS MIB Device Specific Definitions - Sensors and Indicators Unit Device Class

Part 38: XFS MIB Device Specific Definitions - Camera Device Class

Part 39: XFS MIB Device Specific Definitions - Alarm Device Class

Part 40: XFS MIB Device Specific Definitions - Card Embossing Unit Class

Part 41: XFS MIB Device Specific Definitions - Cash-In Module Device Class

Part 42: Reserved for future use.

Part 43: XFS MIB Device Specific Definitions - Vendor Dependent Mode Device Class

Part 44: XFS MIB Application Management

CWA 16926-17:2022 (E)

5

Part 45: XFS MIB Device Specific Definitions - Card Dispenser Device Class

Part 46: XFS MIB Device Specific Definitions - Barcode Reader Device Class

Part 47: XFS MIB Device Specific Definitions - Item Processing Module Device Class

Part 48: XFS MIB Device Specific Definitions - Biometrics Device Class

Parts 49 - 60 are reserved for future use.

Part 61: Application Programming Interface (API) - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Service Provider Interface (SPI) - Programmer's Reference

Part 62: Printer and Scanning Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 63: Identification Card Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 64: Cash Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 65: PIN Keypad Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 66: Check Reader/Scanner Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 67: Depository Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 68: Text Terminal Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 69: Sensors and Indicators Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 70: Vendor Dependent Mode Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 71: Camera Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 72: Alarm Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

Part 73: Card Embossing Unit Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version

3.50 (this CWA) - Programmer's Reference

Part 74: Cash-In Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 75: Card Dispenser Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 76: Barcode Reader Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50

(this CWA) - Programmer's Reference

Part 77: Item Processing Module Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to

Version 3.50 (this CWA) - Programmer's Reference

Part 78: Biometric Device Class Interface - Migration from Version 3.40 (CWA 16296:2020) to Version 3.50 (this

CWA) - Programmer's Reference

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a

complementary document, called Release Notes. The Release Notes contain clarifications and explanations on the

CWA specifications, which are not requiring functional changes. The current version of the Release Notes is

available online from: https://www.cencenelec.eu/areas-of-work/cen-sectors/digital-society-cen/cwa-download-

area/.

CWA 16926-17:2022 (E)

6

The information in this document represents the Workshop's current views on the issues discussed as of the date of

publication. It is provided for informational purposes only and is subject to change without notice. CEN makes no

warranty, express or implied, with respect to this document.

Revision History:

3.10 November 29, 2007 Initial Release.

3.20 March 2, 2011 For a description of changes from version 3.10 to version

3.20 see the BCR 3.20 Migration document.

3.30 March 19, 2015 For a description of changes from version 3.20 to version

3.30 see the BCR 3.30 Migration document.

3.40 December 06, 2019 For a description of changes from version 3.30 to version

3.40 see the BCR 3.40 Migration document.

3.50 November 18, 2022 For a description of changes from version 3.40 to version

3.50 see the BCR 3.50 Migration document.

CWA 16926-17:2022 (E)

7

1 Introduction

1.1 Background to Release 3.50

The CEN/XFS Workshop aims to promote a clear and unambiguous specification defining a multi-vendor software

interface to financial peripheral devices. The XFS (eXtensions for Financial Services) specifications are developed

within the CEN (European Committee for Standardization/Information Society Standardization System) Workshop

environment. CEN Workshops aim to arrive at a European consensus on an issue that can be published as a CEN

Workshop Agreement (CWA).

The CEN/XFS Workshop encourages the participation of both banks and vendors in the deliberations required to

create an industry standard. The CEN/XFS Workshop achieves its goals by focused sub-groups working

electronically and meeting quarterly.

Release 3.50 of the XFS specification is based on a C API and is delivered with the continued promise for the

protection of technical investment for existing applications. This release of the specification extends the

functionality and capabilities of the existing devices covered by the specification:

• Addition of E2E security

• PIN Password Entry

1.2 XFS Service-Specific Programming

The service classes are defined by their service-specific commands and the associated data structures, error codes,

messages, etc. These commands are used to request functions that are specific to one or more classes of Service

Providers, but not all of them, and therefore are not included in the common API for basic or administration

functions.

When a service-specific command is common among two or more classes of Service Providers, the syntax of the

command is as similar as possible across all services, since a major objective of the XFS is to standardize function

codes and structures for the broadest variety of services. For example, using the WFSExecute function, the

commands to read data from various services are as similar as possible to each other in their syntax and data

structures.

In general, the specific command set for a service class is defined as a superset of the specific capabilities likely to

be provided by the developers of the services of that class; thus any particular device will normally support only a

subset of the defined command set.

There are three cases in which a Service Provider may receive a service-specific command that it does not support:

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

implementation of that service does not support it, and the unsupported capability is not considered to be

fundamental to the service. In this case, the Service Provider returns a successful completion, but does no operation.

An example would be a request from an application to turn on a control indicator on a passbook printer; the Service

Provider recognizes the command, but since the passbook printer it is managing does not include that indicator, the

Service Provider does no operation and returns a successful completion to the application.

The requested capability is defined for the class of Service Providers by the XFS specification, the particular vendor

implementation of that service does not support it, and the unsupported capability is considered to be fundamental to

the service. In this case, a WFS_ERR_UNSUPP_COMMAND error for Execute commands or

WFS_ERR_UNSUPP_CATEGORY error for Info commands is returned to the calling application. An example

would be a request from an application to a cash dispenser to retract items where the dispenser hardware does not

have that capability; the Service Provider recognizes the command but, since the cash dispenser it is managing is

unable to fulfil the request, returns this error.

The requested capability is not defined for the class of Service Providers by the XFS specification. In this case, a

WFS_ERR_INVALID_COMMAND error for Execute commands or WFS_ERR_INVALID_CATEGORY error

for Info commands is returned to the calling application.

CWA 16926-17:2022 (E)

8

This design allows implementation of applications that can be used with a range of services that provide differing

subsets of the functionalities that are defined for their service class. Applications may use the WFSGetInfo and

WFSAsyncGetInfo commands to inquire about the capabilities of the service they are about to use, and modify

their behavior accordingly, or they may use functions and then deal with error returns to make decisions as to how to

use the service.

CWA 16926-17:2022 (E)

9

2. Barcode Readers

This specification describes the functionality of a Barcode Reader (BCR) Service Provider. It defines the service-

specific commands that can be issued to the Service Provider using the WFSGetInfo, WFSAsyncGetInfo,

WFSExecute and WFSAsyncExecute functions.

Persistent values are maintained through power failures, open sessions, close session and system resets.

This extension to XFS specifications defines the functionality of BCR service.

A Barcode Reader scans barcodes using any scanning technology. The device logic converts light signals or image

recognition into application data and transmits it to the host system.

The basic operation of the Barcode Reader is managed using WFSExecute/WFSAsyncExecute functions.

When an application wants to read a barcode, it issues a WFS_CMD_BCR_READ command to prepare the scanner

to read any barcode presented to it. When a document is presented to the BCR and a barcode type is recognized, a

completion event is received which contains the barcode data that has been read.

CWA 16926-17:2022 (E)

10

3. References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference

Revision 3.50

CWA 16926-17:2022 (E)

11

4. Info Commands

1.1 WFS_INF_BCR_STATUS

Description This command is used to request status information for the device.

Input Param None.

Output Param LPWFSBCRSTATUS lpStatus;

typedef struct _wfs_bcr_status

 {

 WORD fwDevice;

 WORD fwBCRScanner;

 DWORD dwGuidLights[WFS_BCR_GUIDLIGHTS_SIZE];

 LPSTR lpszExtra;

 WORD wDevicePosition;

 USHORT usPowerSaveRecoveryTime;

 WORD wAntiFraudModule;

 } WFSBCRSTATUS, *LPWFSBCRSTATUS;

fwDevice

Specifies the state of the BCR device as one of the following flags:

Value Meaning

WFS_BCR_DEVONLINE The device is online (i.e. powered on and

operable).

WFS_BCR_DEVOFFLINE The device is offline (e.g. the operator has

taken the device offline by turning a switch).

WFS_BCR_DEVPOWEROFF The device is powered off or physically not

connected.

WFS_BCR_DEVNODEVICE There is no device intended to be there; e.g.

this type of self service machine does not

contain such a device or it is internally not

configured.

WFS_BCR_DEVHWERROR The device is inoperable due to a hardware

error.

WFS_BCR_DEVUSERERROR The device is present but a person is

preventing proper device operation.

WFS_BCR_DEVBUSY The device is busy and unable to process an

execute command at this time.

WFS_BCR_DEVFRAUDATTEMPT The device is present but is inoperable

because it has detected a fraud attempt.

WFS_BCR_DEVPOTENTIALFRAUD The device has detected a potential fraud

attempt and is capable of remaining in

service. In this case the application should

make the decision as to whether to take the

device offline.

fwBCRScanner

Specifies the scanner status (laser, camera or other technology) as one of the following flags:

Value Meaning

WFS_BCR_SCANNERON Scanner is enabled for reading.

WFS_BCR_SCANNEROFF Scanner is disabled.

WFS_BCR_SCANNERINOP Scanner is inoperative due to a hardware

error.

WFS_BCR_SCANNERUNKNOWN Scanner status cannot be determined.

dwGuidLights [...]

Specifies the state of the guidance light indicators. A number of guidance light types are defined

below. Vendor specific guidance lights are defined starting from the end of the array. The

maximum guidance light index is WFS_BCR_GUIDLIGHTS_MAX.

CWA 16926-17:2022 (E)

12

Specifies the state of the guidance light indicator as

WFS_BCR_GUIDANCE_NOT_AVAILABLE, WFS_BCR_GUIDANCE_OFF or a combination

of the following flags consisting of one type B, optionally one type C, and optionally one type D.

Value Meaning Type

WFS_BCR_GUIDANCE_NOT_AVAILABLE The status is not available. A

WFS_BCR_GUIDANCE_OFF The light is turned off. A

WFS_BCR_GUIDANCE_SLOW_FLASH The light is blinking slowly. B

WFS_BCR_GUIDANCE_MEDIUM_FLASH The light is blinking medium B

frequency.

WFS_BCR_GUIDANCE_QUICK_FLASH The light is blinking quickly. B

WFS_BCR_GUIDANCE_CONTINUOUS The light is turned on B

continuous (steady).

WFS_BCR_GUIDANCE_RED The light is red. C

WFS_BCR_GUIDANCE_GREEN The light is green. C

WFS_BCR_GUIDANCE_YELLOW The light is yellow. C

WFS_BCR_GUIDANCE_BLUE The light is blue. C

WFS_BCR_GUIDANCE_CYAN The light is cyan. C

WFS_BCR_GUIDANCE_MAGENTA The light is magenta. C

WFS_BCR_GUIDANCE_WHITE The light is white. C

WFS_BCR_GUIDANCE_ENTRY The light is in the entry state. D

WFS_BCR_GUIDANCE_EXIT The light is in the exit state. D

dwGuidLights [WFS_BCR_GUIDANCE_BCR]

Specifies the state of the guidance light indicator on the Barcode Reader unit.

lpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is

returned as a series of “key=value” strings so that it is easily extensible by Service Providers.

Each string is null-terminated, with the final string terminating with two null characters. An empty

list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

wDevicePosition

Specifies the device position. The device position value is independent of the fwDevice value, e.g.

when the device position is reported as WFS_BCR_DEVICENOTINPOSITION, fwDevice can

have any of the values defined above (including WFS_BCR_DEVONLINE or

WFS_BCR_DEVOFFLINE). This value is one of the following values:

Value Meaning

WFS_BCR_DEVICEINPOSITION The device is in its normal operating

position, or is fixed in place and cannot be

moved.

WFS_BCR_DEVICENOTINPOSITION The device has been removed from its

normal operating position.

WFS_BCR_DEVICEPOSUNKNOWN Due to a hardware error or other condition,

the position of the device cannot be

determined.

WFS_BCR_DEVICEPOSNOTSUPP The physical device does not have the

capability of detecting the position.

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational

state from the current power saving mode. This value is zero if either the power saving mode has

not been activated or no power save control is supported.

wAntiFraudModule

Specifies the state of the anti-fraud module as one of the following values:

Value Meaning

WFS_BCR_AFMNOTSUPP No anti-fraud module is available.

WFS_BCR_AFMOK Anti-fraud module is in a good state and no

foreign device is detected.

WFS_BCR_AFMINOP Anti-fraud module is inoperable.

CWA 16926-17:2022 (E)

13

WFS_BCR_AFMDEVICEDETECTED Anti-fraud module detected the presence of a

foreign device.

WFS_BCR_AFMUNKNOWN The state of the anti-fraud module cannot be

determined.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments In the case where communications with the device has been lost, the fwDevice field will report

WFS_BCR_DEVPOWEROFF when the device has been removed or

WFS_BCR_DEVHWERROR if the communications are unexpectedly lost. All other fields should

contain a value based on the following rules and priority:

1. Report the value as unknown.

2. Report the value as a general h/w error.

3. Report the value as the last known value.

CWA 16926-17:2022 (E)

14

1.2 WFS_INF_BCR_CAPABILITIES

Description This command is used to retrieve the capabilities of the BCR unit.

Input Param None.

Output Param LPWFSBCRCAPS lpCaps;

typedef struct _wfs_bcr_caps

 {

 WORD wClass;

 BOOL bCompound;

 BOOL bCanFilterSymbologies;

 LPWORD lpwSymbologies;

 DWORD dwGuidLights[WFS_BCR_GUIDLIGHTS_SIZE];

 LPSTR lpszExtra;

 BOOL bPowerSaveControl;

 BOOL bAntiFraudModule;

 LPDWORD lpdwSynchronizableCommands;

 } WFSBCRCAPS, *LPWFSBCRCAPS;

wClass

Specifies the logical service class as WFS_SERVICE_CLASS_BCR.

bCompound

Specifies whether the logical device is part of a compound physical device.

bCanFilterSymbologies

Specifies whether the device is capable of discriminating between the presented barcode

symbologies such that only the desired symbologies are recognized/reported.

lpwSymbologies

Pointer to an array of WORDs. This list specifies the barcode symbologies readable by the

scanner. The array is terminated with a zero value. lpwSymbologies is a NULL pointer if the

supported barcode symbologies can not be determined.

Value Meaning

WFS_BCR_SYM_EAN128 GS1-128

WFS_BCR_SYM_EAN8 EAN-8

WFS_BCR_SYM_EAN8_2 EAN-8 with 2 digit add-on

WFS_BCR_SYM_EAN8_5 EAN-8 with 5 digit add-on

WFS_BCR_SYM_EAN13 EAN13

WFS_BCR_SYM_EAN13_2 EAN-13 with 2 digit add-on

WFS_BCR_SYM_EAN13_5 EAN-13 with 5 digit add-on

WFS_BCR_SYM_JAN13 JAN-13

WFS_BCR_SYM_UPCA UPC-A

WFS_BCR_SYM_UPCE0 UPC-E

WFS_BCR_SYM_UPCE0_2 UPC-E with 2 digit add-on

WFS_BCR_SYM_UPCE0_5 UPC-E with 5 digit add-on

WFS_BCR_SYM_UPCE1 UPC-E with leading 1

WFS_BCR_SYM_UPCE1_2 UPC-E with leading 1and 2 digit add-on

WFS_BCR_SYM_UPCE1_5 UPC-E with leading 1and 5 digit add-on

WFS_BCR_SYM_UPCA_2 UPC-A with2 digit add-on

WFS_BCR_SYM_UPCA_5 UPC-A with 5 digit add-on

WFS_BCR_SYM_CODABAR CODABAR (NW-7)

WFS_BCR_SYM_ITF Interleaved 2 of 5 (ITF)

WFS_BCR_SYM_11 CODE 11 (USD-8)

WFS_BCR_SYM_39 CODE 39

WFS_BCR_SYM_49 CODE 49

WFS_BCR_SYM_93 CODE 93

WFS_BCR_SYM_128 CODE 128

WFS_BCR_SYM_MSI MSI

WFS_BCR_SYM_PLESSEY PLESSEY

CWA 16926-17:2022 (E)

15

WFS_BCR_SYM_STD2OF5 STANDARD 2 of 5 (INDUSTRIAL 2 of 5

also)

WFS_BCR_SYM_STD2OF5_IATA STANDARD 2 of 5 (IATA Version)

WFS_BCR_SYM_PDF_417 PDF-417

WFS_BCR_SYM_MICROPDF_417 MICROPDF-417

WFS_BCR_SYM_DATAMATRIX GS1 DataMatrix

WFS_BCR_SYM_MAXICODE MAXICODE

WFS_BCR_SYM_CODEONE CODE ONE

WFS_BCR_SYM_CHANNELCODE CHANNEL CODE

WFS_BCR_SYM_TELEPEN_ORIGINAL Original TELEPEN

WFS_BCR_SYM_TELEPEN_AIM AIM version of TELEPEN

WFS_BCR_SYM_RSS GS1 DataBarTM

WFS_BCR_SYM_RSS_EXPANDED Expanded GS1 DataBarTM

WFS_BCR_SYM_RSS_RESTRICTED Restricted GS1 DataBarTM

WFS_BCR_SYM_COMPOSITE_CODE_A Composite Code A Component

WFS_BCR_SYM_COMPOSITE_CODE_B Composite Code B Component

WFS_BCR_SYM_COMPOSITE_CODE_C Composite Code C Component

WFS_BCR_SYM_POSICODE_A Posicode Variation A

WFS_BCR_SYM_POSICODE_B Posicode Variation B

WFS_BCR_SYM_TRIOPTIC_CODE_39 Trioptic Code 39

WFS_BCR_SYM_CODABLOCK_F Codablock F

WFS_BCR_SYM_CODE_16K Code 16K

WFS_BCR_SYM_QRCODE QR Code

WFS_BCR_SYM_AZTEC Aztec Codes

WFS_BCR_SYM_UKPOST UK Post

WFS_BCR_SYM_PLANET US Postal Planet

WFS_BCR_SYM_POSTNET US Postal Postnet

WFS_BCR_SYM_CANADIANPOST Canadian Post

WFS_BCR_SYM_NETHERLANDSPOST Netherlands Post

WFS_BCR_SYM_AUSTRALIANPOST Australian Post

WFS_BCR_SYM_JAPANESEPOST Japanese Post

WFS_BCR_SYM_CHINESEPOST Chinese Post

WFS_BCR_SYM_KOREANPOST Korean Post

dwGuidLights [...]

Specifies which guidance lights are available. A number of guidance light types are defined below.

Vendor specific guidance lights are defined starting from the end of the array. The maximum

guidance light index is WFS_BCR_GUIDLIGHTS_MAX.

In addition to supporting specific flash rates and colors, some guidance lights also have the

capability to show directional movement representing “entry” and “exit”. The “entry” state gives

the impression of leading a user to place a card into the device. The “exit” state gives the

impression of ejection from a device to a user and would be used for retrieving a card from the

device.

The elements of this array are specified as a combination of the following flags and indicate all of

the possible flash rates (type B), colors (type C) and directions (type D) that the guidance light

indicator is capable of handling. If the guidance light indicator only supports one color then no

value of type C is returned. If the guidance light indicator does not support direction then no value

of type D is returned. A value of WFS_BCR_GUIDANCE_NOT_AVAILABLE indicates that the

device has no guidance light indicator or the device controls the light directly with no application

control possible.

Value Meaning Type

WFS_BCR_GUIDANCE_NOT_AVAILABLE There is no guidance light control A

available at this position.

WFS_BCR_GUIDANCE_OFF The light can be off. B

WFS_BCR_GUIDANCE_SLOW_FLASH The light can blink slowly. B

WFS_BCR_GUIDANCE_MEDIUM_FLASH The light can blink medium B

frequency.

WFS_BCR_GUIDANCE_QUICK_FLASH The light can blink quickly. B

CWA 16926-17:2022 (E)

16

WFS_BCR_GUIDANCE_CONTINUOUS The light can be continuous B

(steady).

WFS_BCR_GUIDANCE_RED The light can be red. C

WFS_BCR_GUIDANCE_GREEN The light can be green. C

WFS_BCR_GUIDANCE_YELLOW The light can be yellow. C

WFS_BCR_GUIDANCE_BLUE The light can be blue. C

WFS_BCR_GUIDANCE_CYAN The light can be cyan. C

WFS_BCR_GUIDANCE_MAGENTA The light can be magenta. C

WFS_BCR_GUIDANCE_WHITE The light can be white. C

WFS_BCR_GUIDANCE_ENTRY The light can be in the entry state. D

WFS_BCR_GUIDANCE_EXIT The light can be in the exit state. D

dwGuidLights [WFS_BCR_GUIDANCE_BCR]

Specifies whether the guidance light indicator on the barcode reader unit is available.

lpszExtra

Pointer to a list of vendor-specific, or any other extended, information. The information is

returned as a series of “key=value” strings so that it is easily extensible by Service Providers.

Each string is null-terminated, with the final string terminating with two null characters. An empty

list may be indicated by either a NULL pointer or a pointer to two consecutive null characters.

bPowerSaveControl

Specifies whether power saving control is available. This can either be TRUE if available or

FALSE if not available.

bAntiFraudModule

Specifies whether the anti-fraud module is available. This can either be TRUE if available or

FALSE if not available.

lpdwSynchronizableCommands

Pointer to a zero-terminated list of DWORDs which contains the execute command IDs that can

be synchronized. If no execute command can be synchronized then this parameter will be NULL.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter

may not be device or vendor-independent.

CWA 16926-17:2022 (E)

17

5. Execute Commands

1.3 WFS_CMD_BCR_READ

Description This command enables the barcode reader. The barcode reader will scan for barcodes and when it

successfully manages to read one or more barcodes the command will complete. The completion

event for this command contains the scanned barcode data.

Input Param LPWFSBCRREADINPUT lpReadInput;

typedef struct _wfs_bcr_read_input

 {

 LPWORD lpwSymbologies;

 } WFSBCRREADINPUT, *LPWFSBCRREADINPUT;

lpwSymbologies

Array specifying a list that contains the sub-set of bar code symbologies that the application wants

to be accepted for this command. The array is terminated with a zero value.

In some cases the Service Provider can discriminate between barcode symbologies and return the

data only if the presented symbology matches with one of the desired symbologies. See the

bCanFilterSymbologies capability to determine if the Service Provider supports this feature. If the

Service Provider does not support this feature then this parameter is ignored. If all symbologies

should be accepted then lpwSymbologies should be set to NULL.

Output Param LPWFSBCRREADOUTPUT *lppReadOutput;

Pointer to a NULL terminated array of pointers to WFSBCRREADOUTPUT structures. There is

one array element for each barcode read during the scan.

typedef struct _wfs_bcr_read_output

 {

 WORD wSymbology;

 LPWFSBCRXDATA lpxBarcodeData;

 LPSTR lpszSymbologyName;

 } WFSBCRREADOUTPUT, *LPWFSBCRREADOUTPUT;

wSymbology

Specifies the barcode symbology recognized. This contains one of the values returned in the

lpwSymbologies field of the WFS_INF_BCR_CAPABILITIES command. If the barcode reader is

unable to recognize the symbology as one of the values reported via the device capabilities then

the value for this field will be WFS_BCR_SYM_UNKNOWN.

lpxBarcodeData

Contains the barcode data read from the barcode reader. The format of the data will depend on the

barcode symbology read. In most cases this will be an array of bytes containing ASCII numeric

digits. However, the format of the data in this field depends entirely on the symbology read, e.g. it

may contain 8 bit character values where the symbol is dependent on the codepage used to encode

the barcode, may contain UNICODE data, or may be a binary block of data. The application is

responsible for checking the completeness and validity of the data.

lpszSymbologyName

A vendor dependent symbology identifier for the symbology recognized.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BCR_BARCODEINVALID The read operation could not be completed

successfully. The barcode presented was

defective or was wrongly read.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments The device waits for the period of time specified by the dwTimeOut parameter in the

WFSExecute call for one of the enabled symbologies to be presented, unless the hardware has a

fixed timeout period that is less than the value passed in the WFSExecute command.

CWA 16926-17:2022 (E)

18

The data type LPWFSBCRXDATA is used to return the barcode data.

typedef struct _wfs_bcr_hex_data

 {

 USHORT usLength;

 LPBYTE lpbData;

 } WFSBCRXDATA, *LPWFSBCRXDATA;

usLength

Length of the byte stream pointed to by lpbData.

lpbData

Pointer to the data stream.

CWA 16926-17:2022 (E)

19

1.4 WFS_CMD_BCR_RESET

Description This command is used to reset the device. The scanner returns to power-on initial status and

remains disabled for any barcode label reading.

Input Param None.

Output Param None.

Error Codes Only the generic errors codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

CWA 16926-17:2022 (E)

20

1.5 WFS_CMD_BCR_SET_GUIDANCE_LIGHT

Description This command is used to set the status of the BCR guidance lights. This includes defining the flash

rate, the color and the direction. When an application tries to use a color or direction that is not

supported then the Service Provider will return the generic error WFS_ERR_UNSUPP_DATA.

Input Param LPWFSBCRSETGUIDLIGHT lpSetGuidLight;

typedef struct _wfs_bcr_set_guidlight

 {

 WORD wGuidLight;

 DWORD dwCommand;

 } WFSBCRSETGUIDLIGHT, *LPWFSBCRSETGUIDLIGHT;

wGuidLight

Specifies the index of the guidance light to set as one of the values defined within the capabilities

section.

dwCommand

Specifies the state of the guidance light indicator as WFS_BCR_GUIDANCE_OFF or a

combination of the following flags consisting of one type B, optionally one type C and optionally

one type D. If no value of type C is specified then the default color is used. The Service Provider

determines which color is used as the default color.

Value Meaning Type

WFS_BCR_GUIDANCE_OFF The light indicator is turned off. A

WFS_BCR_GUIDANCE_SLOW_FLASH The light indicator is set to flash B

slowly.

WFS_BCR_GUIDANCE_MEDIUM_FLASH The light indicator is set to flash B

medium frequency.

WFS_BCR_GUIDANCE_QUICK_FLASH The light indicator is set to flash B

quickly.

WFS_BCR_GUIDANCE_CONTINUOUS The light indicator is turned on B

continuously (steady).

WFS_BCR_GUIDANCE_RED The light indicator color is set C

to red.

WFS_BCR_GUIDANCE_GREEN The light indicator color is set C

to green.

WFS_BCR_GUIDANCE_YELLOW The light indicator color is set C

to yellow.

WFS_BCR_GUIDANCE_BLUE The light indicator color is set C

to blue.

WFS_BCR_GUIDANCE_CYAN The light indicator color is set C

to cyan.

WFS_BCR_GUIDANCE_MAGENTA The light indicator color is set C

to magenta.

WFS_BCR_GUIDANCE_WHITE The light indicator color is set C

to white.

WFS_BCR_GUIDANCE_ENTRY The light indicator is set D

to the entry state.

WFS_BCR_GUIDANCE_EXIT The light indicator is set D

to the exit state.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BCR_INVALID_PORT An attempt to set a guidance light to a new

value was invalid because the guidance light

does not exist.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments The slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in order

to comply with American Disabilities Act guidelines only a slow or medium flash rate must be

CWA 16926-17:2022 (E)

21

used.

CWA 16926-17:2022 (E)

22

1.6 WFS_CMD_BCR_POWER_SAVE_CONTROL

Description This command activates or deactivates the power-saving mode.

If the Service Provider receives another execute command while in power saving mode, the

Service Provider automatically exits the power saving mode, and executes the requested

command. If the Service Provider receives an information command while in power saving mode,

the Service Provider will not exit the power saving mode.

Input Param LPWFSBCRPOWERSAVECONTROL lpPowerSaveControl;

typedef struct _wfs_bcr_power_save_control

 {

 USHORT usMaxPowerSaveRecoveryTime;

 } WFSBCRPOWERSAVECONTROL, *LPWFSBCRPOWERSAVECONTROL;

usMaxPowerSaveRecoveryTime

Specifies the maximum number of seconds in which the device must be able to return to its normal

operating state when exiting power save mode. The device will be set to the highest possible

power save mode within this constraint. If usMaxPowerSaveRecoveryTime is set to zero then the

device will exit the power saving mode.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BCR_POWERSAVETOOSHORT The power saving mode has not been

activated because the device is not able to

resume from the power saving mode within

the specified

usMaxPowerSaveRecoveryTime value.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this

command:

Value Meaning

WFS_SRVE_BCR_POWER_SAVE_CHANGE The power save recovery time has changed.

Comments None.

CWA 16926-17:2022 (E)

23

1.7 WFS_CMD_BCR_SYNCHRONIZE_COMMAND

Description This command is used to reduce response time of a command (e.g. for synchronization with

display) as well as to synchronize actions of the different device classes. This command is

intended to be used only on hardware which is capable of synchronizing functionality within a

single device class or with other device classes.

The list of execute commands which this command supports for synchronization is retrieved in the

lpdwSynchronizableCommands parameter of the WFS_INF_BCR_CAPABILITIES.

This command is optional, i.e. any other command can be called without having to call it in

advance. Any preparation that occurs by calling this command will not affect any other subsequent

command. However, any subsequent execute command other than the one that was specified in the

dwCommand input parameter will execute normally and may invalidate the pending

synchronization. In this case the application should call the

WFS_CMD_BCR_SYNCHRONIZE_COMMAND again in order to start a synchronization.

Input Param LPWFSBCRSYNCHRONIZECOMMAND lpSynchronizeCommand;

typedef struct _wfs_bcr_synchronize_command

 {

 DWORD dwCommand;

 LPVOID lpCmdData;

 } WFSBCRSYNCHRONIZECOMMAND, *LPWFSBCRSYNCHRONIZECOMMAND;

dwCommand

The command ID of the command to be synchronized and executed next.

lpCmdData

Pointer to data or a data structure that represents the parameter that is normally associated with the

command that is specified in dwCommand. For example, if dwCommand is

WFS_CMD_BCR_READ then lpCmdData will point to a WFSBCRREADOUTPUT structure.

This parameter can be NULL if no command input parameter is needed or if this detail is not

needed to synchronize for the command.

It will be device-dependent whether the synchronization is effective or not in the case where the

application synchronizes for a command with this command specifying a parameter but

subsequently executes the synchronized command with a different parameter. This case should not

result in an error; however, the preparation effect could be different from what the application

expects. The application should, therefore, make sure to use the same parameter between

lpCmdData of this command and the subsequent corresponding execute command.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be

generated by this command:

Value Meaning

WFS_ERR_BCR_COMMANDUNSUPP The command specified in the dwCommand

field is not supported by the Service

Provider.

WFS_ERR_BCR_SYNCHRONIZEUNSUPP The preparation for the command specified

in the dwCommand with the parameter

specified in the lpCmdData is not supported

by the Service Provider.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments For sample flows of this synchronization see the [Ref 1] Appendix C.

CWA 16926-17:2022 (E)

24

6. Events

6.1 WFS_SRVE_BCR_DEVICEPOSITION

Description This service event reports that the device has changed its position status.

Event Param LPWFSBCRDEVICEPOSITION lpDevicePosition;

typedef struct _wfs_bcr_device_position

 {

 WORD wPosition;

 } WFSBCRDEVICEPOSITION, *LPWFSBCRDEVICEPOSITION;

wPosition

Position of the device as one of the following values:

Value Meaning

WFS_BCR_DEVICEINPOSITION The device is in its normal operating

position.

WFS_BCR_DEVICENOTINPOSITION The device has been removed from its

normal operating position.

WFS_BCR_DEVICEPOSUNKNOWN The position of the device cannot be

determined.

Comments None.

CWA 16926-17:2022 (E)

25

1.8 WFS_SRVE_BCR_POWER_SAVE_CHANGE

Description This service event specifies that the power save recovery time has changed.

Event Param LPWFSBCRPOWERSAVECHANGE lpPowerSaveChange;

typedef struct _wfs_bcr_power_save_change

 {

 USHORT usPowerSaveRecoveryTime;

 } WFSBCRPOWERSAVECHANGE, *LPWFSBCRPOWERSAVECHANGE;

usPowerSaveRecoveryTime

Specifies the actual number of seconds required by the device to resume its normal operational

state. This value is zero if the device exited the power saving mode.

Comments If another device class compounded with this device enters into a power saving mode this device

will automatically enter into the same power saving mode and this event will be generated.

CWA 16926-17:2022 (E)

26

7. C - Header file

/**

* *

* xfsbcr.h XFS - Barcode Reader (BCR) definitions *

* *

* Version 3.50 (November 18 2022 *

* *

**/

#ifndef __INC_XFSBCR__H

#define __INC_XFSBCR__H

#ifdef __cplusplus

extern "C" {

#endif

#include <xfsapi.h>

/* be aware of alignment */

#pragma pack (push, 1)

/* values of WFSBCRCAPS.wClass */

#define WFS_SERVICE_CLASS_BCR (15)

#define WFS_SERVICE_CLASS_VERSION_BCR (0x3203) /* Version 3.50 */

#define WFS_SERVICE_CLASS_NAME_BCR "BCR"

#define BCR_SERVICE_OFFSET (WFS_SERVICE_CLASS_BCR * 100)

/* BCR Info Commands */

#define WFS_INF_BCR_STATUS (BCR_SERVICE_OFFSET + 1)

#define WFS_INF_BCR_CAPABILITIES (BCR_SERVICE_OFFSET + 2)

/* BCR Execute Commands */

#define WFS_CMD_BCR_READ (BCR_SERVICE_OFFSET + 1)

#define WFS_CMD_BCR_RESET (BCR_SERVICE_OFFSET + 2)

#define WFS_CMD_BCR_SET_GUIDANCE_LIGHT (BCR_SERVICE_OFFSET + 3)

#define WFS_CMD_BCR_POWER_SAVE_CONTROL (BCR_SERVICE_OFFSET + 4)

#define WFS_CMD_BCR_SYNCHRONIZE_COMMAND (BCR_SERVICE_OFFSET + 5)

/* BCR Messages */

#define WFS_SRVE_BCR_DEVICEPOSITION (BCR_SERVICE_OFFSET + 1)

#define WFS_SRVE_BCR_POWER_SAVE_CHANGE (BCR_SERVICE_OFFSET + 2)

/* values of WFSBCRSTATUS.fwDevice */

#define WFS_BCR_DEVONLINE WFS_STAT_DEVONLINE

#define WFS_BCR_DEVOFFLINE WFS_STAT_DEVOFFLINE

#define WFS_BCR_DEVPOWEROFF WFS_STAT_DEVPOWEROFF

#define WFS_BCR_DEVNODEVICE WFS_STAT_DEVNODEVICE

#define WFS_BCR_DEVHWERROR WFS_STAT_DEVHWERROR

#define WFS_BCR_DEVUSERERROR WFS_STAT_DEVUSERERROR

#define WFS_BCR_DEVBUSY WFS_STAT_DEVBUSY

#define WFS_BCR_DEVFRAUDATTEMPT WFS_STAT_DEVFRAUDATTEMPT

#define WFS_BCR_DEVPOTENTIALFRAUD WFS_STAT_DEVPOTENTIALFRAUD

/* values of WFSBCRSTATUS.fwBCRScanner */

#define WFS_BCR_SCANNERON (0)

#define WFS_BCR_SCANNEROFF (1)

#define WFS_BCR_SCANNERINOP (2)

#define WFS_BCR_SCANNERUNKNOWN (3)

/* values of WFSBCRSTATUS.wDevicePosition

 WFSBCRDEVICEPOSITION.wPosition */

#define WFS_BCR_DEVICEINPOSITION (0)

#define WFS_BCR_DEVICENOTINPOSITION (1)

CWA 16926-17:2022 (E)

27

#define WFS_BCR_DEVICEPOSUNKNOWN (2)

#define WFS_BCR_DEVICEPOSNOTSUPP (3)

/* values of WFSBCRCAPS.lpwSymbologies

 WFSBCRREADINPUT.lpwSymbologies

 WFSBCRREADOUTPUT.wSymbology */

#define WFS_BCR_SYM_UNKNOWN (0)

#define WFS_BCR_SYM_EAN128 (1)

#define WFS_BCR_SYM_EAN8 (2)

#define WFS_BCR_SYM_EAN8_2 (3)

#define WFS_BCR_SYM_EAN8_5 (4)

#define WFS_BCR_SYM_EAN13 (5)

#define WFS_BCR_SYM_EAN13_2 (6)

#define WFS_BCR_SYM_EAN13_5 (7)

#define WFS_BCR_SYM_JAN13 (8)

#define WFS_BCR_SYM_UPCA (9)

#define WFS_BCR_SYM_UPCE0 (10)

#define WFS_BCR_SYM_UPCE0_2 (11)

#define WFS_BCR_SYM_UPCE0_5 (12)

#define WFS_BCR_SYM_UPCE1 (13)

#define WFS_BCR_SYM_UPCE1_2 (14)

#define WFS_BCR_SYM_UPCE1_5 (15)

#define WFS_BCR_SYM_UPCA_2 (16)

#define WFS_BCR_SYM_UPCA_5 (17)

#define WFS_BCR_SYM_CODABAR (18)

#define WFS_BCR_SYM_ITF (19)

#define WFS_BCR_SYM_11 (20)

#define WFS_BCR_SYM_39 (21)

#define WFS_BCR_SYM_49 (22)

#define WFS_BCR_SYM_93 (23)

#define WFS_BCR_SYM_128 (24)

#define WFS_BCR_SYM_MSI (25)

#define WFS_BCR_SYM_PLESSEY (26)

#define WFS_BCR_SYM_STD2OF5 (27)

#define WFS_BCR_SYM_STD2OF5_IATA (28)

#define WFS_BCR_SYM_PDF_417 (29)

#define WFS_BCR_SYM_MICROPDF_417 (30)

#define WFS_BCR_SYM_DATAMATRIX (31)

#define WFS_BCR_SYM_MAXICODE (32)

#define WFS_BCR_SYM_CODEONE (33)

#define WFS_BCR_SYM_CHANNELCODE (34)

#define WFS_BCR_SYM_TELEPEN_ORIGINAL (35)

#define WFS_BCR_SYM_TELEPEN_AIM (36)

#define WFS_BCR_SYM_RSS (37)

#define WFS_BCR_SYM_RSS_EXPANDED (38)

#define WFS_BCR_SYM_RSS_RESTRICTED (39)

#define WFS_BCR_SYM_COMPOSITE_CODE_A (40)

#define WFS_BCR_SYM_COMPOSITE_CODE_B (41)

#define WFS_BCR_SYM_COMPOSITE_CODE_C (42)

#define WFS_BCR_SYM_POSICODE_A (43)

#define WFS_BCR_SYM_POSICODE_B (44)

#define WFS_BCR_SYM_TRIOPTIC_CODE_39 (45)

#define WFS_BCR_SYM_CODABLOCK_F (46)

#define WFS_BCR_SYM_CODE_16K (47)

#define WFS_BCR_SYM_QRCODE (48)

#define WFS_BCR_SYM_AZTEC (49)

#define WFS_BCR_SYM_UKPOST (50)

#define WFS_BCR_SYM_PLANET (51)

#define WFS_BCR_SYM_POSTNET (52)

#define WFS_BCR_SYM_CANADIANPOST (53)

#define WFS_BCR_SYM_NETHERLANDSPOST (54)

#define WFS_BCR_SYM_AUSTRALIANPOST (55)

#define WFS_BCR_SYM_JAPANESEPOST (56)

#define WFS_BCR_SYM_CHINESEPOST (57)

#define WFS_BCR_SYM_KOREANPOST (58)

/* Size and max index of dwGuidLights array */

#define WFS_BCR_GUIDLIGHTS_SIZE (32)

#define WFS_BCR_GUIDLIGHTS_MAX (WFS_BCR_GUIDLIGHTS_SIZE - 1)

/* Indices of WFSBCRSTATUS.dwGuidLights [...]

CWA 16926-17:2022 (E)

28

 WFSBCRCAPS.dwGuidLights [...]

*/

#define WFS_BCR_GUIDANCE_BCR (0)

/* Values of WFSBCRSTATUS.dwGuidLights [...]

 WFSBCRCAPS.dwGuidLights [...],

 WFSBCRSETGUIDLIGHT.wGuidLight */

#define WFS_BCR_GUIDANCE_NOT_AVAILABLE (0x00000000)

#define WFS_BCR_GUIDANCE_OFF (0x00000001)

#define WFS_BCR_GUIDANCE_SLOW_FLASH (0x00000004)

#define WFS_BCR_GUIDANCE_MEDIUM_FLASH (0x00000008)

#define WFS_BCR_GUIDANCE_QUICK_FLASH (0x00000010)

#define WFS_BCR_GUIDANCE_CONTINUOUS (0x00000080)

#define WFS_BCR_GUIDANCE_RED (0x00000100)

#define WFS_BCR_GUIDANCE_GREEN (0x00000200)

#define WFS_BCR_GUIDANCE_YELLOW (0x00000400)

#define WFS_BCR_GUIDANCE_BLUE (0x00000800)

#define WFS_BCR_GUIDANCE_CYAN (0x00001000)

#define WFS_BCR_GUIDANCE_MAGENTA (0x00002000)

#define WFS_BCR_GUIDANCE_WHITE (0x00004000)

#define WFS_BCR_GUIDANCE_ENTRY (0x00100000)

#define WFS_BCR_GUIDANCE_EXIT (0x00200000)

/* values of WFSBCRSTATUS.wAntiFraudModule */

#define WFS_BCR_AFMNOTSUPP (0)

#define WFS_BCR_AFMOK (1)

#define WFS_BCR_AFMINOP (2)

#define WFS_BCR_AFMDEVICEDETECTED (3)

#define WFS_BCR_AFMUNKNOWN (4)

/* XFS BCR Errors */

#define WFS_ERR_BCR_BARCODEINVALID (-(BCR_SERVICE_OFFSET + 0))

#define WFS_ERR_BCR_INVALID_PORT (-(BCR_SERVICE_OFFSET + 1))

#define WFS_ERR_BCR_POWERSAVETOOSHORT (-(BCR_SERVICE_OFFSET + 2))

#define WFS_ERR_BCR_COMMANDUNSUPP (-(BCR_SERVICE_OFFSET + 3))

#define WFS_ERR_BCR_SYNCHRONIZEUNSUPP (-(BCR_SERVICE_OFFSET + 4))

/*===*/

/* BCR Info Command Structures */

/*===*/

typedef struct _wfs_bcr_status

{

 WORD fwDevice;

 WORD fwBCRScanner;

 DWORD dwGuidLights[WFS_BCR_GUIDLIGHTS_SIZE];

 LPSTR lpszExtra;

 WORD wDevicePosition;

 USHORT usPowerSaveRecoveryTime;

 WORD wAntiFraudModule;

} WFSBCRSTATUS, *LPWFSBCRSTATUS;

typedef struct _wfs_bcr_caps

{

 WORD wClass;

 BOOL bCompound;

 BOOL bCanFilterSymbologies;

 LPWORD lpwSymbologies;

 DWORD dwGuidLights[WFS_BCR_GUIDLIGHTS_SIZE];

 LPSTR lpszExtra;

 BOOL bPowerSaveControl;

 BOOL bAntiFraudModule;

 LPDWORD lpdwSynchronizableCommands;

} WFSBCRCAPS, *LPWFSBCRCAPS;

/*===*/

/* BCR Execute Command Structures */

/*===*/

typedef struct _wfs_bcr_hex_data

CWA 16926-17:2022 (E)

29

{

 USHORT usLength;

 LPBYTE lpbData;

} WFSBCRXDATA, * LPWFSBCRXDATA;

typedef struct _wfs_bcr_read_input

{

 LPWORD lpwSymbologies;

} WFSBCRREADINPUT, *LPWFSBCRREADINPUT;

typedef struct _wfs_bcr_read_output

{

 WORD wSymbology;

 LPWFSBCRXDATA lpxBarcodeData;

 LPSTR lpszSymbologyName;

} WFSBCRREADOUTPUT, *LPWFSBCRREADOUTPUT;

typedef struct _wfs_bcr_set_guidlight

{

 WORD wGuidLight;

 DWORD dwCommand;

} WFSBCRSETGUIDLIGHT, *LPWFSBCRSETGUIDLIGHT;

typedef struct _wfs_bcr_power_save_control

{

 USHORT usMaxPowerSaveRecoveryTime;

} WFSBCRPOWERSAVECONTROL, *LPWFSBCRPOWERSAVECONTROL;

typedef struct _wfs_bcr_synchronize_command

{

 DWORD dwCommand;

 LPVOID lpCmdData;

} WFSBCRSYNCHRONIZECOMMAND, *LPWFSBCRSYNCHRONIZECOMMAND;

/*===*/

/* BCR Message Structures */

/*===*/

typedef struct _wfs_bcr_device_position

{

 WORD wPosition;

} WFSBCRDEVICEPOSITION, *LPWFSBCRDEVICEPOSITION;

typedef struct _wfs_bcr_power_save_change

{

 USHORT usPowerSaveRecoveryTime;

} WFSBCRPOWERSAVECHANGE, *LPWFSBCRPOWERSAVECHANGE;

/* restore alignment */

#pragma pack(pop)

#ifdef __cplusplus

} /*extern "C"*/

#endif

#endif /* __INC_XFSBCR__H */

